Bounds on Projections onto Bivariate Polynomial Spline Spaces with Stable Bases

نویسنده

  • Larry L. Schumaker
چکیده

We derive L 1 bounds for norms of projections onto bivariate polynomial spline spaces on regular triangulations with stable local bases. We then apply this result to derive error bounds for best L 2-and`2-approximation by splines on quasi-uniform triangulations. x1. Introduction Let X L 1 (() be a linear space deened a set with polygonal boundary. Suppose hh; i is a semi-deenite inner-product on X with associated semi-norm k k. We assume that hf; gi = 0, whenever fg = 0 on , (1:1) kfk kgk, whenever jf(x)j jg(x)j for all x 2 : (1:2) Suppose S X is a linear space of polynomial splines (bivariate piecewise poly-nomials) deened on a regular triangulation 4 of (two triangles intersect only at a common vertex or along a common edge). We assume that S is a Hilbert space with respect to hh; i.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Asymptotics for Polynomial Spline Regression

In this paper we develop a general theory of local asymptotics for least squares estimates over polynomial spline spaces in a regression problem. The polynomial spline spaces we consider include univariate splines, tensor product splines, and bivariate or multivariate splines on triangulations. We establish asymptotic normality of the estimate and study the magnitude of the bias due to spline a...

متن کامل

On Stable Local Bases for Bivariate Polynomial Spline Spaces

Stable locally supported bases are constructed for the spaces S r d (4) of polynomial splines of degree d 3r + 2 and smoothness r deened on trian-gulations 4, as well as for various superspline subspaces. In addition, we show that for r 1, it is impossible to construct bases which are simultaneously stable and locally linearly independent. x1. Introduction This paper deals with the classical sp...

متن کامل

Macro-elements and stable local bases for splines on Clough-Tocher triangulations

Macro-elements of arbitrary smoothness are constructed on Clough-Tocher triangle splits. These elements can be used for solving boundary-value problems or for interpolation of Hermite data, and are shown to be optimal with respect to spline degree. We believe they are also optimal with respect to the number of degrees of freedom. The construction provides local bases for certain superspline spa...

متن کامل

On the dimension of spline spaces on triangulations

We consider, from an algebro-geometric perspective, the problem of determining the dimension of the space of bivariate and trivariate piecewise polynomial functions (or splines) defined on triangular and tetrahedral partitions. Classical splines on planar rectangular grids play an important role in Computer Aided Geometric Design, and splines spaces over arbitrary subdivisions of planar domains...

متن کامل

Approximation by C Splines on Piecewise Conic Domains

We develop a Hermite interpolation scheme and prove error bounds forC bivariate piecewise polynomial spaces of Argyris type vanishing on the boundary of curved domains enclosed by piecewise conics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002